
DATA STRUCTURES USING ‘C’



Data Structures



 Overview: System Life Cycle
 Algorithm Specification
 Data Abstraction
 Performance Analysis
 Performance Measurement



 Performance evaluation
◦ Performance analysis
◦ Performance measurement

 Performance analysis - prior
◦ an important branch of CS, complexity theory
◦ estimate time and space
◦ machine independent

 Performance measurement -posterior
◦ The actual time and space requirements
◦ machine dependent



 Space and time
◦ Does the program efficiently use primary and secondary 

storage?
◦ Is the program's running time acceptable for the task?

 Evaluate a program generally
◦ Does the program meet the original specifications of the task?
◦ Does it work correctly?
◦ Does the program contain documentation that show how to use 

it and how it works?
◦ Does the program effectively use functions to create logical 

units?
◦ Is the program's code readable?



 Evaluate a program
◦ MWGWRERE

Meet specifications, Work correctly, 
Good user-interface, Well-documentation,
Readable, Effectively use functions, 
Running time acceptable, Efficiently use space

 How to achieve them?
◦ Good programming style, experience, and practice
◦ Discuss and think



 Definition
◦ The space complexity of a program is the amount 

of memory that it needs to run to completion
 The space needed is the sum of 
◦ Fixed space and Variable space

 Fixed space
◦ Includes the instructions, variables, and constants
◦ Independent of the number and size of I/O

 Variable space 
◦ Includes dynamic allocation, functions' recursion

 Total space of any program 
◦ S(P)= c+ Sp(Instance)



float abc(float a, float b, float c)
{
return a+b+b*c+(a+b-c)/(a+b)+4.00;

}
Sabc(I)= 0

float sum(float list[], int n)
{
float fTmpSum= 0;
int i;
for (i= 0; i< n; i++)
fTmpSum+= list[i];

return fTmpSum;
}
Ssum(I)= Ssum (n)= 0

float rsum(float list[], int n)
{
if (n) return rsum(list, n-1)+ list[n-1];
return 0;

}
Srsum (n)= 4*n

parameter:float(list[]) 1
parameter:integer(n) 1
return address 1
return value 1



Definition
The time complexity, T(p), taken by a program P is the sum 

of the compile time and the run time 
Total time
T(P)= compile time + run (or execution) time

= c + tp(instance characteristics)
Compile time does not depend on the instance characteristics

How to evaluate?
Use the system clock
Number of steps performed
machine-independent

Definition of a program step
A program step is a syntactically or semantically meaningful 

program segment whose execution time is independent of the 
instance characteristics

(10 additions can be one step, 100 multiplications can also be one 
step)

(p33~p35 有計算C++ 語法之 steps 之概述, 原則是一個表示式一步)



 the first method: count by a program
float sum(float list[], int n)
{
float tempsum= 0; count++; /* for assignment */
int i;
for(i= 0; i< n; i++) {
count++; /* for the for loop */
tempsum+= list[i]; count++; /* for assignment 

*/
}
count++; /* last execution of for */
count++; /* for return */
return tempsum;

}

float sum(float list[], int n)
{
float tempsum= 0
int i;
for (i=0; i< n; i++)
count+= 2;

count+= 3;
return 0;

}
2n+ 3



float rsum(float list[], int n)
{
count ++;  /* for if condition  */
if (n) {
count++; /* for return and rsum invocation */
return rsum(list, n-1)+ list[n-1];

}
count++; //return
return list[0];

}

2n+ 2

void add(int a[][MaxSize], int b[][MaxSize],
int c[][MaxSize], int rows, int cols)

{
int i, j;
for (i=0; i< rows; i++)
for (j=0; j< cols; j++)
c[i][j]= a[i][j] + b[i][j];

}
2rows*cols+ 2rows+ 1

trsum(0) = 2
trsum(n) = 2 + trsum(n-1)

= 2 + 2 + trsum(n-2)
= 2*2 + trsum(n-2)
= …
= 2n + trsum(0)= 2n+2 

p.39, program 1.19
自行計算



Statement s/e Frequency Total Steps

void add(int a[][MaxSize], .  .  . 0 0 0
{ 0 0 0
int i, j; 0 0 0
for (i=0; i< rows; i++) 1 rows+ 1 rows+ 1
for (j=0; j< cols; j++) 1 rows*(cols+1) rows*cols+ rows
c[i][j]= a[i][j] + b[i][j]; 1 rows*cols rows*cols

} 0 0 0

Total 2rows*cols+2rows+1

 The second method: build a table to count
s/e: steps per execution
frequency: total numbers of times each statements is executed



Difficulty: the time complexity is not dependent 
solely on the number of inputs or outputs
To determine the step count
Best case, Worst case, and Average

Example
int binsearch(int list[], int searchnum, int left, int right)
{// search list[0]<= list[1]<=...<=list[n-1] for searchnum
int middle;
while (left<= right){
middle= (left+ right)/2;
switch(compare(list[middle], searchnum)){

case -1: left= middle+ 1;
break;

case 0: return middle;
case 1: right= middle- 1;

} }
return -1;}

int binsearch(int list[], int searchnum, int left, int right)
{// search list[0]<= list[1]<=...<=list[n-1] for searchnum
int middle;
while (left<= right){
middle= (left+ right)/2;
switch(compare(list[middle], searchnum)){

case -1: left= middle+ 1;
break;

case 0: return middle;
case 1: right= middle- 1;

} }
return -1;}



 motivation
◦ Target: Compare the time complexity of two programs 

that computing the same function and predict the 
growth in run time as instance characteristics change

◦ Determining the exact step count is difficult task 
◦ Not very useful for comparative purpose

ex: C1n2+C2n <= C3n for n <= 98, (C1=1, C2=2, C3=100)
C1n2+C2n > C3n for n > 98,

◦ Determining the exact step count usually not worth(can 
not get exact run time)

 Asymptotic notation
◦ Big "oh“ O
 upper bound(current trend)

◦ Omega 
 lower bound

◦ Theta 
 upper and lower bound



 Definition of Big "oh"
◦ f(n)= O(g((n)) iff there exist positive constants c

and n0 such that f(n)<= cg(n) for all n, n>= n0
 Examples
◦ 3n+ 2= O(n) as 3n+ 2<= 4n for all n>= 2
◦ 10n2+ 4n+ 2= O(n2) as 10n2+ 4n+ 2<= 11n2 for n>= 

5
◦ 3n+2<> O(1), 10n2+ 4n+ 2<> O(n)

 Remarks
◦ g(n) is the least upper bound
 n=O(n2)=O(n2.5)= O(n3)= O(2n)
◦ O(1): constant, O(n): linear, O(n2): quadratic, 

O(n3): cubic, and O(2n): exponential



 Remarks on "="
◦ O(g(n))= f(n) is meaningless
◦ "=" as "is" and not as "equals"

 Theorem
◦ If f(n)= amnm+...+ a1n+ a0, then f(n)= O(nm)
◦ Proof:
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 Definition
◦ f(n)= (g(n)) iff there exist positive constants c

and n0 such that f(n)>= cg(n) for all n, n>= n0
 Examples
◦ 3n+ 2= (n) as 3n+ 2>= 3n for n>= 1
◦ 10n2+ 4n+ 2= (n2) as 10n2+4n+ 2>= n2 for n>= 1
◦ 6*2n+ n2= (2n) as 6*2n+ n2 >= 2n for n>= 1

 Remarks
◦ The largest lower bound
 3n+3= (1), 10n2+4n+2= (n); 6*2n+ n2= (n100)

 Theorem
◦ If f(n)= amnm+ ...+ a1

n+ a0 and am> 0, then f(n)= 
(nm)



 Definition
◦ f(n)= (g(n)) iff there exist positive constants c1, c2, 

and n0 such that c1g(n)<= f(n) <= c2g(n) for all n, 
n>= n0

 Examples
◦ 3n+2=(n) as 3n+2>=3n for n>1 and 3n+2<=4n for all 

n>= 2
◦ 10n2+ 4n+ 2=  (n2); 6*2n+n2= (2n)

 Remarks
◦ Both an upper and lower bound
◦ 3n+2<>(1); 10n2+4n+ 2<> (n)

 Theorem
◦ If f(n)= amnm+ ... +a1n+ a0 and am> 0, then f(n)= 
(nm)



Statement Asymptotic complexity

void add(int a[][Max.......) 0
{ 0
int i, j; 0
for(i= 0; i< rows; i++) (rows)
for(j=0; j< cols; j++) (rows*cols)
c[i][j]= a[i][j]+ b[i][j]; (rows*cols)

} 0

Total (rows*cols)



int binsearch(int list[], int .....)
{  int middle;
while (left<= right){
middle= (left+ right)/2;
switch(compare(list[middle], 

searchnum)){
case -1: left= middle+ 1;

break;
case 0: return middle;
case 1: right= middle- 1;

}
}
return -1;
}

worst case (log n)

The more global approach to count steps: 
focus the variation of instance characterics.



void perm(char *a, int k, int n)
{//generate all the 排列 of
// a[k],…a[n-1]
char temp;
if (k == n-1){

for(int i= 0; i<=n; i++)
cout << a[i]<<“ ”;

cout << endl;
}

else {
for(i= k; i< n; i++){
temp=a[k];a[k]=a[i];a[i]=temp;
perm(a, k+1, n);
temp=a[k];a[k]=a[i];a[i]=temp;
}

}
}

k= n-1, (n)
k< n-1, else 

for loop, n-k times
each call Tperm(k+1, n-1)
hence, (Tperm (k+1, n-1))

so, Tperm (k, n-1)= ((n-k)(Tperm (k+1, n-1)))

Using the substitution, we have 
Tperm (0, n-1)= (n(n!)), n>= 1   



 Magic square
◦ An n-by-n matrix of the integers from 1 to n2

such that the sum of each row and column and 
the two major diagonals is the same
◦ Example, n= 5(n must be odd)

15 8 1 24 17
16 14 7 5 23
22 20 13 6 4
3 21 19 12 10
9 2 25 18 11



 Coxeter has given the simple rule
◦ Put a one in the middle box of the top row. 

Go up and left assigning numbers in increasing 
order to empty boxes. 
If your move causes you to jump off the square, 
figure out where you would be if you landed on 
a box on the opposite side of the square.
Continue with this box.
If a box is occupied, go down instead of up and 
continue.



procedure MAGIC(square, n)
// for n odd create a magic square which is declared as an array
// square(0: n-1, 0: n-1)
// (i, j) is a square position. 2<= key <= n2 is integer valued
if n is even the [print("input error"); stop]
SQUARE<- 0
square(0, (n-1)/2)<- 1;  // store 1 in middle of first row
key<- 2; i<- 0; j<- (n-1)/2  // i, j are current position
while key <= n2 do
(k, l)<- ((i-1) mod n, (j-1)mod n)  // look up and left
if square(k, l) <> 0

then i<- (i+1) mod n  // square occupied, move down
else (i, j)<- (k, l)  // square (k, l) needs to be assigned
square(i, j)<- key    // assign it a value
key<- key + 1
end
print(n, square) // out result
end MAGIC



 Time complexity
◦ Generally some function of the instance 

characteristics
 Remarks on "n"
◦ If Tp=(n), Tq= (n2), then we say P is faster 

than Q for "sufficiently large" n.
 since Tp<= cn, n>= n1, and Tq<= dn2, n>= n2,

but cn<= dn2 for n>= c/d
so P is faster than Q whenever n>= max{n1, n2, d/c}

◦ See Table 1.7 and Figure 1.3
 For reasonable large n, n> 100, only 

program of small complexity, n, nlog n, n2, 
n3 are feasible
◦ See Table 1.8



Time for f(n) instructions on 109 instr/sec computer

n           f(n)= n  f(n)=log2n  f(n)=n2 f(n)=n3 f(n)=n4 f(n)=n10 f(n)=2n

10
20
30
40
50

100
1,000

10,000
100,000

1,000,000

.01us

.02us

.03us

.04us

.05us

.10us
1.00us

10.00us
100.00us

1.00ms

.03us

.09us

.15us

.21us

.28us

.66us
0.96us

130.03us
1.66ms

19.92ms

.1us

.4us

.9us
1.6us
2.5us
10us
1ms

100ms
10s

16.67m

1us
8us

27us
64us

125us
1ms

1s
16.67m
11.57d
31.71y

10us
160us
810us

2.56ms
6.25us
100ms

16.67m
115.7d
3171y
3*107y

10s
2.84hr
6.83d

12136d
3.1y

3171y
3*1013y
3*1023y
3*1033y
3*1043y

1us
1ms

1s
18.3m

13d
4*1013y

32*10283y



Instance characteristic n

Time Name 1  2    4        8 16 32

1 Constant 1  1    1         1 1 1
log n Logarithmic 0  1    2         3 4 5

n Linear 1  2    4         8 16 32
nlog n Log Linear 0  2    8       24 64 160

n2 Quadratic 1  4  16       64 256 1024
n3 Cubic 1  8  61     512 4096 32768
2n Exponential 2  4  16     256 65536 4294967296
n! Factorial 1  2  54 40326 20922789888000  26313*1033



 Overview: System Life Cycle
 Algorithm Specification
 Data Abstraction
 Performance Analysis
 Performance Measurement



Obtaining the actual space and time of a program
Using Borland C++, ‘386 at 25 MHz
Time(hsec): returns the current time in hundredths of a sec.
Goal: 得到測量結果的曲線圖, 並進而求得執行時間方程式

Step 1, 分析(g(n)), (g(n)), 做為起始預測做為起始預測
Step 2, write a program to testStep 2, write a program to test
--技巧技巧1 : to time a short event, to repeat it several times  1 : to time a short event, to repeat it several times  
--技巧技巧2 : suitable test data need to be generated2 : suitable test data need to be generated

Example:  time(start);
for(b=1; b<=r[j];b++)

k=seqsearch(a,n[j],0);// 被測對象
time(stop);
totaltime = stop –start;
runtime = totaltime/r[j]; // 結果參考fig 1.5, fig1.6



 Overview: System Life Cycle
 Algorithm Specification
◦ Definition, Description

 Data Abstraction- ADT
 Performance Analysis
◦ Time and Space
 O(g(n))

 Performance Measurement
 Generating Test Data

- analyze the algorithm being tested to 
determine classes of data


